Math 6261
23-02-17

Recall that
Tho (Borel-Cantelli Lemma) Suppose $\sum_{n=1}^{\infty} P\left(A_{n}\right)<\infty$.
Then $P\left(A_{n}\right.$ io. $)=0$.

As an application of the Borel-Cantelli Lemma, we have the following version of strong law of large numbers.
The 2.11. Let X_{1}, X_{2}, \cdots, be ii.d. with $E X_{i}=\mu$ and $E X_{i}^{4}<\infty$.
Then $\lim _{n \rightarrow \infty} \frac{x_{1}+\cdots+x_{n}}{n}=\mu \quad$ a.s.
Pf. Repkcing X_{i} by $X_{i}-K$, we may assume that $E X_{i}=0$.
Set $S_{n}=X_{1}+\cdots+X_{n}$. We will show that $\lim _{n \rightarrow \infty} \frac{S_{n}}{n}=0$ ais
Notice that

$$
\begin{aligned}
E S_{n}^{4} & =E\left(\sum_{l \leqslant i, j, k, l \leq n} x_{i} x_{j} x_{k} x_{l}\right) \\
& =\sum_{1 \leqslant i, j, k, l \leq n} E\left(x_{i} x_{j} x_{k} x_{l}\right)
\end{aligned}
$$

Terms in the above sums of the form

$$
E\left(x_{i}^{3} x_{j}\right), E\left(x_{i}^{2} x_{j} x_{k}\right), E\left(x_{i} x_{j} x_{k} x_{l}\right)
$$

are all. The remaining terms are of the form $E\left(X_{i}^{2} x_{j}^{2}\right)(i \neq j)$ and. $E\left(x_{i}^{4}\right)$.

Hence $E S_{n}^{4}=\frac{\binom{n}{2} \cdot\binom{4}{2}}{E\left(X_{1}^{2} X_{2}^{2}\right)+{ }^{n} E\left(X_{1}^{4}\right)}$

$$
\begin{aligned}
& =3 n(n-1) E\left(X_{1}^{2} X_{2}^{2}\right)+n E\left(X_{1}^{4}\right) \\
& \leqslant 3 n(n-1) E\left(X_{1}^{4}\right)^{\frac{1}{2}} E\left(X_{2}^{4}\right)^{\frac{1}{2}}+n E\left(X_{1}^{4}\right) \\
& =\left(3 n^{2}-2 n\right) E X_{1}^{4}
\end{aligned}
$$

Hence $E S_{n}^{4} \leqslant C n^{2}$.
Let $\varepsilon>0$. Then by Chebyshev inequality,

$$
P\left(\left|S_{n}\right|>n \varepsilon\right) \leqslant \frac{E S_{n}^{4}}{n^{4} \varepsilon^{4}} \leqslant \frac{C}{n^{2} \varepsilon^{4}}
$$

So $\quad \sum_{n=1}^{\infty} P\left(\left|S_{n}\right|>n \varepsilon\right)<\infty$.
It follows that $P\left(\left|S_{n}\right|>n \varepsilon\right.$ i.0. $)=0$. Hence $\overline{\lim }_{n \rightarrow \infty} \frac{\left|S_{n}\right|}{n} \leqslant \varepsilon$ ass.
Since \mathcal{E} is arbitrary, $\frac{S_{n}}{n} \rightarrow 0$ almost surely.

Thy 2.12. (The second Borel-Cantelli lemma).
If the events A_{n} are independent with $\sum_{n=1}^{\infty} P\left(A_{n}\right)=\infty$, then $P\left(A_{n}\right.$ i.o. $)=1$.

Pf. Let $M<N$. By independence and $1-x<e^{-x}$

$$
\begin{aligned}
P\left(\bigcap_{n=M}^{N} A_{n}^{c}\right) & =\prod_{n=M}^{N}\left(1-P\left(A_{n}\right)\right) \\
& \leqslant \prod_{n=M}^{N} e^{-P\left(A_{n}\right)} \\
& =e^{-\sum_{n=M}^{N} P\left(A_{n}\right)} \rightarrow 0 \text { as } N \rightarrow \infty
\end{aligned}
$$

Hence $P\left(\bigcap_{n=m}^{\infty} A_{n}^{c}\right)=0 \Rightarrow P\left(\bigcup_{n=M}^{\infty} A_{n}\right)=1 \Rightarrow P\left(A_{n}\right.$ i.0. $)=1$.

Cor. 2.13. If X_{1}, X_{2}, \cdots, are i.i.d with $E\left|X_{i}\right|=\infty$, then

$$
P\left(\left|x_{n}\right| \geqslant n \quad \text { i.o. }\right)=1,
$$

and

$$
P\left(\lim _{n \rightarrow \infty} \frac{S_{n}}{n} \in(-\infty, \infty)\right)=0 .
$$

Pf. $\quad E\left|x_{1}\right|=\int_{0}^{\infty} P\left(\left|x_{1}\right|>t\right) d t$

$$
\begin{aligned}
& \leqslant \sum_{n=1}^{\infty} \int_{n-1}^{n} P\left(\left|x_{1}\right|>t\right) d t \\
& \leqslant \sum_{n=1}^{\infty} P\left(\left|x_{1}\right|>n-1\right) \\
& =\sum_{n=1}^{\infty} P\left(\left|x_{n-1}\right|>n-1\right)
\end{aligned}
$$

By the second $B C$ lemma, $\quad P\left(\left|x_{n}\right|>n\right.$ i.0. $)=1$.
To prove the second claim, observe that

$$
\frac{S_{n}}{n}-\frac{S_{n+1}}{n+1}=\frac{S_{n}}{n}-\frac{S_{n}+X_{n+1}}{n+1}=\frac{S_{n}}{n(n+1)}-\frac{X_{n+1}}{n+1}
$$

write $C=\left\{\omega: \lim _{n \rightarrow \infty} \frac{S_{n}}{n} \in(-\infty, \infty)\right\}$.
On $\subset \cap\left\{\omega:\left|x_{n}\right|>n\right.$ i.0. $\}, \quad \frac{S_{n}}{n_{(n+1)}} \rightarrow 0$ so

$$
\left|\frac{S_{n}}{n}-\frac{S_{n+1}}{n+1}\right| \geqslant \frac{1}{2} \quad \text { io. }
$$

contradicting the fact that $\omega \in C$. Heme $C \cap\left\{w:\left|x_{n}\right|>n\right.$ i.0. $\}$ $=\phi$
which implies $P(C)=0$.

Remark: The above result shows that the condition

$$
E\left|x_{i}\right|<\infty
$$

in the strong law of large numbers is necessary.
\$2.4 Strong law of large numbers.

The 2.14. Let $X_{1}, \cdots, X_{n}, \cdots$, be pairwise independent, identically distributed r.U.'s with $E\left|X_{i}\right|<\infty$. Let $\mu=E X_{i}$.
Then

$$
\lim _{n \rightarrow \infty} \frac{x_{1}+\cdots+x_{n}}{n}=\mu \quad \text { ass. }
$$

Below we will follow Etemadi's proof.

Lem A Let $Y_{k}=X_{k} \mathbb{I}_{\left(\left|X_{k}\right| \leqslant k\right)}$ and

$$
T_{n}=Y_{1}+\cdots+Y_{n}
$$

Then it suffices to show that $\frac{T_{n}}{n} \rightarrow \mu$ ais.
Pf. $\quad \sum_{k=1}^{\infty} P\left(\left|x_{k}\right|>k\right)$

$$
=\sum_{k=1}^{\infty} P\left(\left|x_{1}\right|>k\right) \leqslant \int_{0}^{\infty} P\left(\left|X_{1}\right|>t\right) d t=E\left|X_{1}\right|<\infty .
$$

By the Bovel-Cantelli lemma,

$$
P\left(\left|X_{k}\right|>k \text { i.o. }\right)=0 \text {. }
$$

Equivalently,

$$
P\left(X_{k} \neq Y_{R} \text { i. . }\right)=0
$$

This shows that $\quad\left|S_{n}(\omega)-T_{n}(\omega)\right| \leqslant R(\omega)<\infty$ a.s. for all n.
Hence $\quad \lim _{n \rightarrow \infty} \frac{T_{n}}{n}=\mu$ a.s $\Rightarrow \lim _{n \rightarrow \infty} \frac{S_{n}}{n}=\mu$ ass.

Lem B. $\quad \sum_{k=1}^{\infty} \frac{\operatorname{Var}\left(Y_{k}\right)}{k^{2}}<4 E\left|X_{1}\right|<\infty$.

Pf. $\operatorname{Var}\left(Y_{k}\right) \leqslant E\left(Y_{k}^{2}\right)=\int_{0}^{\infty} P\left(\left|Y_{k}\right|^{2}>t\right) d t$

$$
\begin{aligned}
& =\int_{0}^{\infty} 2 y P\left(\left|Y_{k}\right|>y\right) d y \\
& =\int_{0}^{k} 2 y P\left(\left|Y_{k}\right|>y\right) d y \\
& \leqslant \int_{0}^{k} 2 y P\left(\left|X_{k}\right|>y\right) d y=\int_{0}^{k} 2 y P\left(\left|X_{1}\right|>y\right) d y
\end{aligned}
$$

Hence

$$
\begin{aligned}
\sum_{k=1}^{\infty} \frac{\operatorname{Var}\left(Y_{k}\right)}{k^{2}} & \leqslant \sum_{k=1}^{\infty} \frac{1}{k^{2}} \int_{0}^{k} 2 y P\left(\left|x_{1}\right|>y\right) d y \\
& =\sum_{k=1}^{\infty} \frac{1}{k^{2}} \int_{0}^{\infty} 2 y \cdot \mathbb{1}_{(y<k)} P\left(\left|x_{1}\right|>y\right) d y \\
& =\int_{0}^{\infty}\left(\sum_{k=1}^{\infty} \frac{1}{k^{2}} \cdot \mathbb{1}_{(y<k)}\right) \cdot 2 y P\left(\left|x_{1}\right|>y\right) d y \\
& \leqslant \int_{0}^{\infty}\left(\sum_{k=1}^{\infty} \frac{2}{k(k+1)} \cdot 1_{(y<k)}\right) \cdot 2 y P\left(\left|x_{1}\right|>y\right) d y \\
& \leqslant \int_{0}^{\infty}\left(\sum_{k=[y]+1}^{\infty} 2 \cdot\left(\frac{1}{k}-\frac{1}{k+1}\right)\right) \cdot(2 y) P\left(\left|x_{1}\right| y\right) d y
\end{aligned}
$$

$$
\begin{aligned}
& \leqslant \int_{0}^{\infty} \frac{2}{[y]+1} \cdot 2 y \cdot P\left(\left|x_{1}\right|>y\right) d y \\
& \leqslant 4 \int_{0}^{\infty} P\left(\left|x_{1}\right|>y\right) d y \\
& =4 E\left|x_{1}\right| .
\end{aligned}
$$

Pf of the strong law of large numbers:
Since both X_{n}^{+}, X_{n}^{-}satisfy the assumptions of the theorem and $X_{n}=X_{n}^{+}-X_{n}^{-}$, so we can Clog assume that $X_{n} \geqslant 0$.

Now we will first prove the result for a subsequence, and then use monotonicity to control the values in between.
Let $d>1$ and $k(n)=\left[d^{n}\right]$, where $[x]$ denotes the integral part of x.
For $\varepsilon>0$, we have

$$
\begin{aligned}
& \sum_{n=1}^{\infty} P\left(\left|T_{k(n)}-E T_{k(n)}\right|>\varepsilon \cdot k(n)\right) \\
& \quad(\text { Chebysheou) } \\
& \leqslant \varepsilon^{-2} \cdot \sum_{n=1}^{\infty} \frac{\operatorname{Var}\left(T_{k(n)}\right)}{k(n)^{2}} \\
& \quad=\varepsilon^{-2} \sum_{n=1}^{\infty} \frac{1}{k(n)^{2}} \cdot \sum_{m=1}^{k(n)} \operatorname{Var}\left(Y_{m}\right)
\end{aligned}
$$

(in which we use the pairwise independently assumption)

$$
\begin{align*}
& =\varepsilon^{-2} \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \frac{1}{k(n)^{2}} \cdot \mathbb{1}_{\{m \leqslant k(n)\}} \operatorname{Var}\left(Y_{m}\right) \\
& =\varepsilon^{-2} \sum_{m=1}^{\infty} \operatorname{Var}\left(Y_{m}\right) \cdot \sum_{n: k(n) \geqslant m} \frac{1}{k(n)^{2}} \cdot(1) \tag{1}
\end{align*}
$$

Notice that

$$
\begin{aligned}
\sum_{n:\left[\alpha^{n}\right] \geqslant m} \frac{1}{\left[\alpha^{n}\right]^{2}} & \leqslant \sum_{n: \alpha^{n} \geqslant m} 4 \cdot \alpha^{-2 n} \\
& =4 \cdot \sum_{n=\left\lceil\frac{\log m}{\log \alpha}\right\rceil} \alpha^{-2 n} \\
& =4 \cdot \alpha^{-2\left\lceil\frac{\log m}{\log \alpha}\right\rceil} \cdot \frac{1}{1-\alpha^{-2}} \\
& \leqslant 4 \cdot 2^{-2\left(\log _{\alpha} m\right)} \frac{1}{1-\alpha^{-2}} \\
& =4 \cdot \frac{1}{m^{2}} \cdot \frac{1}{1-\alpha^{-2}}
\end{aligned}
$$

So by (1),

$$
\begin{array}{rl}
\sum_{n=1}^{\infty} P & P\left(\left|T_{k(n)}-E T_{k(n)}\right|>\varepsilon k(n)\right) \\
& \leqslant \varepsilon^{-2} \cdot \sum_{m=1}^{\infty} \frac{\operatorname{Var}\left(Y_{m}\right)}{m^{2}} \cdot \frac{4}{1-d^{-2}}
\end{array}
$$

$<\infty \quad$ (by Lem B).
By the Borel-Cantelli lemma,

$$
\overline{\lim }_{n \rightarrow \infty} \frac{\left|T_{k(n)}-E T_{k(n)}\right|}{k(n)} \leqslant \varepsilon \quad \text { a.s. }
$$

Since $\varepsilon>0$ is arbitraivily given, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{T_{k(n)}-E T_{k(n)}}{k(n)}=0 \tag{2}
\end{equation*}
$$

However $E Y_{k}=E\left(X_{k} \mathbb{1}_{\left(X_{k} \leqslant k\right)}\right)$

$$
=E\left(X_{1} \cdot \mathbb{1}_{\left(X_{1} \leqslant k\right)}\right) \rightarrow E X_{1}=\mu \text { as } k \rightarrow \infty
$$

(by the monotone convergence ohm).
It follows that $\frac{E T_{k(n)}}{k(n)} \rightarrow \mu$ as $n \rightarrow \infty$.
So by (2),

$$
\lim _{n \rightarrow \infty} \frac{T_{k(n)}}{k(n)}=\mu
$$

Now for a given $m \in \mathbb{N}$, let n s.t

$$
k(n)<m<k(n+1) .
$$

Then

$$
\frac{T_{k(n)}}{k(n+1)} \leqslant \frac{T_{m}}{m} \leqslant \frac{T_{k(n+1)}}{k(n)}
$$

Since $\frac{k(n+1)}{k(n)} \rightarrow \alpha$ as $n \rightarrow \infty$, it follows that

$$
\frac{\mu}{\alpha} \leqslant \lim _{m \rightarrow \infty} \frac{T_{m}}{m} \leqslant \overline{\lim }_{m \rightarrow \infty} \frac{T_{m}}{m} \leqslant \alpha \cdot \mu \quad \text { almost surely. }
$$

But $\sin c e ~ d>1$ is arbitrary, we get

$$
\lim _{m \rightarrow \infty} \frac{T_{m}}{m}=\mu \quad \text { a.s. }
$$

The next result shows that SLLN holds whenever EX exists.
The 2.15. Let X_{1}, X_{2}, \cdots, be i.i.d with $E X_{i}^{+}=\infty$ and $E X_{i}^{-}<\infty$. Then

$$
\lim _{n \rightarrow \infty} \frac{X_{1}+\cdots+X_{n}}{n}=\infty \quad \text { ais. }
$$

Pf. Let $M>0 . \operatorname{Set} X_{i}^{M}=\min \left\{X_{i}, M\right\}$.
Then X_{i}^{M} are i.i.d. with $E\left|X_{i}^{M}\right|<\infty$.
By the SLLN,

$$
\frac{X_{1}+\cdots+X_{n}}{n} \geqslant \frac{X_{1}^{M}+\cdots+X_{n}^{M}}{n} \rightarrow E X_{i}^{M} \text { as } n \rightarrow \infty
$$

By the monotone convergence Thm,
Since $\left(X_{i}^{M}\right)^{+} \not X_{i}^{+}, \quad E\left(X_{i}^{M}\right)^{+} \rightarrow E X_{i}^{+}$as $M \rightarrow \infty$.
But $E\left(X_{i}^{M}\right)^{-}=E X_{i}^{-}$,

So we have

$$
\begin{aligned}
E X_{i}^{M} & =E\left(X_{i}^{M}\right)^{+}-E\left(X_{i}^{M}\right)^{-} \\
& \rightarrow E X_{i}^{+}-E X_{i}^{-}=E X_{i} \quad \text { as } M \rightarrow \infty
\end{aligned}
$$

It follows that

$$
\lim _{n \rightarrow \infty} \frac{X_{1}+\cdots+X_{n}}{n}=\infty \quad \text { ass. }
$$

